Caution - Federal law restricts this device to sale by or on the order of a physician. ## 1. INTENDED USE ETI-AB-COREK PLUS is an *in vitro* enzyme immunoassay (EIA) intended for use in the qualitative determination of total antibodies to hepatitis B core antigen (anti-HBc) in human serum or plasma (EDTA, citrate or heparin). The ETI-AB-COREK PLUS is intended for manual use and with the Biochem Immunosystems Labotech/ETI-LAB automated instrument. The detection of total anti-HBc is indicative of a laboratory diagnosis for exposure to hepatitis B virus (HBV) infection. Further HBV serological marker testing is required to define the specific disease state. The ETI-AB-COREK PLUS assay's performance has not been established for the monitoring of HBV disease or therapy. Assay performance characteristics have not been established when the ETI-AB-COREK PLUS total anti-HBc assay is used in conjunction with other manufacturers' assays for specific HBV serological markers. Users are responsible for establishing their own performance characteristics. The performance characteristics of this assay have not been established for newborn testing. Caution - Performance characteristics for ETI-AB-COREK PLUS were largely determined using archival specimens which may not be representative of test results obtained from fresh specimens. Laboratories are advised that they should monitor patient results using other appropriate HBV serological markers or retest questionable specimens with another legally-marketed total anti-HBc assay. # 2. SUMMARY AND EXPLANATION OF THE TEST In acute hepatitis B infection, total and IgM anti-HBc will be detectable in the serum shortly before clinical symptoms appear and slightly after the occurrence of hepatitis B surface antigen (HBsAg). In cases in which hepatitis B infection resolves, total anti-HBc is detectable during the window period following loss of HBsAg and prior to the development of antibody to HBsAg (anti-HBs). In cases of asymptomatic or subclinical hepatitis B, total anti-HBc detectability will follow the same pattern as in acute symptomatic infection. In these cases, however, HBsAg and hepatitis B e antigen (HBeAg) will be present for only a brief period or may not be detectable. Therefore, in these patients, detection of total anti-HBc and/or total anti-HBs must be relied on as evidence of previous HBV infection (1, 2). During the prodromal, acute and early convalescent phases of hepatitis B infection, total anti-HBc will exist primarily as IgM antibody. IgM anti-HBc diminishes and disappears over time (usually in approximately six months). Anti-HBc IgG antibodies may develop shortly after the onset of hepatitis B infection and will persist over time in all patients, regardless of the outcome of their infection. In patients with chronic hepatitis B infection or an asymptomatic chronic carrier state, HBsAg appears during the incubation phase of the disease and may persist for years and possibly for life (2-4). Total anti-HBc also appears during this early phase, rises in titer, and persists over time; the highest titers of total anti-HBc are found in the chronic HBsAg carrier state (3-5). Thus, in chronic infection, total anti-HBc antibody will be detectable in association with other hepatitis B serological markers. In a small percentage of cases, total anti-HBc will diminish over time and may fall into the undetectable range many years after hepatitis B infection. Total anti-HBc may also be undetectable in the very early phases of acute hepatitis B infection. Total anti-HBc also may be detectable in the absence of any other hepatitis B markers. This finding may indicate recent infection (patient in the HBsAg/anti-HBs window), or infection in the more remote past, in which case anti-HBs may also be detectable (6-8). Although it is not possible to discriminate between acute and chronic infection or between recent or remote infection solely with the total anti-HBc assay, results obtained using the ETI-AB-COREK PLUS kit, when used in conjunction with other hepatitis B assays, may aid in the determination of the stage of disease caused by HBV or in establishing past exposure to HBV. ## 3. PRINCIPLE OF THE PROCEDURE ETI-AB-COREK PLUS uses a monoclonal antibody directed to the immunodominant domain of hepatitis B core antigen as the basis for this enzyme immunoassay. The assay is a competitive test based on the use of polystyrene microwells coated with mouse monoclonal antibody (IgG2b-k class) to HBcAg. An enzyme tracer containing horseradish peroxidase-labeled human antibodies to HBcAg detects any captured total anti-HBc from the patient's specimen. In the assay procedure, patient specimens or controls and recombinant HBcAg contained in the neutralizing solution are incubated in antibody-coated microwells. If total anti-HBc is present in a specimen or control, it competes with the antibody coated on the microwell for the recombinant HBcAg. Excess sample and recombinant HBcAg are removed by a wash step, and the enzyme tracer is then added to the microwells and allowed to incubate. The enzyme tracer binds to any antigen-antibody complexes present in the microwells. The quantity of enzyme tracer that binds to the solid phase via recombinant HBcAg and the consequent enzyme activity are inversely related to the anti-HBc concentration present in the specimen or control. Excess enzyme tracer is removed by a wash step, and a chromogen/substrate solution is added to the microwells and allowed to incubate. If a sample does not contain total anti-HBc, the bound enzyme (horseradish peroxidase) chemically reduces the substrate peroxide, which concurrently oxidizes the chromogen tetramethylbenzidine (TMB) to a blue color (650 nm). The blue color turns to yellow (450 nm) after addition of the stop If a sample contains total anti-HBc, the microwell will be colorless after the chromogen/substrate solution is added and will remain colorless after the stop solution is added. Color intensity, which is measured spectrophotometrically, is inversely indicative of the concentration of total anti-HBc. Absorbance value readings for patient specimens are compared to a cutoff value determined from the mean of the calibrators. ## 4. REAGENTS AND OTHER MATERIALS PROVIDED | Catalog
Number | Product Description | Quantity/
Volume | |-------------------|---|--| | P001927 | ETI-AB-COREK PLUS | 192 tests | | | Coated Strips Microwells coated with mouse monoclonal antibody to HBcAg (IgG2b-k class; directed to immunodominant domain of hepatitis B core antigen). | Twenty-four 8-well strips (contained in 2 pouches) | | · | Enzyme Tracer (Human) Horseradish peroxidase-labeled human antibodies to HBcAg, buffer, protein stabilizers. Preservative: 0.2% ProClin 300. | 0.7 mL | | | Tracer Diluent Buffer, human serum/plasma, protein stabilizers. Preservative: 0.2% ProClin 300. | Two
14.7-mL vials | | Catalog
Number | Product Description | Quantity/
Volume | |-------------------|--|---------------------| | | Calibrator (Human) Human serum/plasma non-reactive for all known HBV markers. Preservative: 0.2% ProClin 300. | 2.5 mL | | | Negative Control (Human) Human serum/plasma non-reactive for all known HBV markers. Preservative: 0.2% ProClin 300. | 2.5 mL | | | Positive Control (Human) Human IgG anti-HBc, protein stabilizers. Preservative: 0.2% ProClin 300. | 2 mL | | | Neutralizing Solution Recombinant HBcAg (22Kd, expressed in <i>E. coli</i>), buffer, protein stabilizers. Preservative: 0.2% ProClin 300. | 16 mL | | | Incubation Buffer Buffer, an inert blue dye. Preservative: 0.2% ProClin 300. | 16 mL | | | Wash Buffer (concentrate)* Buffer, detergents and preservatives. | Two
40-mL vials | | | Chromogen/Substrate* Tetramethylbenzidine/hydrogen peroxide system. | Two
16-mL vials | | | Stop Solution* 1N sulfuric acid. Caution: corrosive. | 30 mL | | | Strip Sealers | 48 | | | Plate Sealers | 4 | | | Pouch Sealer | 1 | ^{*} All lots of wash buffer concentrate, chromogen/substrate and stop solution are interchangeable between assay kits. ## 5. WARNINGS AND PRECAUTIONS - · For in vitro diagnostic use only. - The human blood source material used to prepare this product (e.g. Enzyme Tracer, Tracer Diluent, Calibrator, controls) has been tested and found non-reactive for HBsAg, antibodies to HCV, and antibodies to HIV-1 and HIV-2 by licensed methods. Because no test method can offer complete assurance that laboratory specimens do not contain HIV, hepatitis B virus, or other infectious agents, specimens should be handled at the BSL 2 as recommended for any potentially infectious human serum or blood specimen in the CDC-NIH manual, Biosafety in Microbiological and Biomedical Laboratories, 4th Edition, May 1999 and NCCLS Approved Guideline M29-A, Protection of Laboratory Workers from Instrument Biohazards and Infectious Disease Transmitted by Blood, Body Fluids, and Tissue. (9, 10, 11). - All specimens, reagents, and controls should be handled as if capable of transmitting disease. Follow standard precautions for handling infectious agents during all procedures: - Do not pipette by mouth. - Do not eat, drink, smoke, or apply cosmetics in areas where specimens are handled. - Wear protective clothing such as lab coats, protective glasses, and disposable gloves when handling specimens and assay reagents. Wash hands thoroughly afterwards. - Perform all work with infectious materials in a designated area. - Dispose of all specimens and used assay materials as if capable of transmitting disease: - Decontaminate liquid wastes, including those containing neutralized acid, either: - (a) by
autoclaving for 60 minutes at 121°C; or - (b) by treating with a 1:10 or 1:100 dilution of household bleach (sodium hypochlorite concentration approximately 5%). The wastes should remain in contact with the sodium hypochlorite solution for 30 minutes for effective decontamination, after which they can be disposed of in the sink (9, 11). Do not autoclave solutions containing sodium hypochlorite. - Autoclave non-ignitable solids for 60 minutes at 121°C. - Incinerate disposable ignitable materials. - Performing the assay outside the time and temperature ranges provided may produce invalid results. Assays not falling within the established time and temperature ranges must be repeated. - Use only dispensing equipment that has been calibrated to deliver accurate volumes, per the laboratory's standard procedures. - WARNING Chromogen/substrate and the stop solution contain ingredients that can irritate skin and cause eye damage. Handle them with care. Avoid getting them in eyes or on skin or clothing. In case of contact with skin or eyes, immediately flush the affected area with water for 15 minutes. For eyes, obtain medical attention. Reagents containing ProClin 300 may cause allergic reactions. Avoid prolonged contact with skin. Wash thoroughly after handling. ## 6. REAGENT PREPARATION - Bring reagents to room temperature (20-25°C). - The coated strips, calibrator, negative and positive controls, recombinant HBcAg, incubation buffer, chromogen/substrate and stop solution are provided ready to use. Note Use clean, plastic containers or acid-washed glassware for preparing the following solutions. A clean, dedicated dispenser is recommended for the working enzyme tracer to avoid contamination. • Working enzyme tracer. Bring reagents to room temperature. To prepare the working enzyme tracer, dilute the enzyme tracer 1:50 with tracer diluent (see chart below). After dilution, the working enzyme tracer can be used for one week if stored at 2-8°C. Caution - Verify that the total volume prepared is sufficient for the number of tests included in the run. Use a clean container for each dilution and label the container with the reagent name, lot number of kit, lot number of reagent, plus the date of preparation and date of expiration of the working enzyme tracer. | Number of Strips | Enzyme Tracer
(μL) | Tracer Diluent
(μL) | Total Volume
(mL) | |------------------|-----------------------|------------------------|----------------------| | 2 | 48 | 2352 | 2.4 | | 4 | 80 | 3920 | 4.0 | | 6 | 112 | 5488 | 5.6 | | 8 | 144 | 7056 | 7.2 | | I 10 | 176 | 8624 | 8.8 | |------|-----|-------|------| | 12 | 208 | 10192 | 10.4 | Note - Sufficient reagents are provided to allow for six runs per kit. - Incubation buffer. After bringing incubation buffer to room temperature, check if crystallization has occurred during storage. If crystals are present, warm the incubation buffer to 37°C and mix well to eliminate crystals before using. - Wash solution. To prepare the working wash buffer, dilute the wash buffer concentrate (40 mL) to 1000 mL (1.0 L) with distilled or deionized water. If crystallization has occurred at 2-8°C, warm the wash buffer concentrate to 37°C and mix well before diluting. Water used for wash buffer dilution should be stored in a clean, non-metallic container to prevent contamination with peroxidase-inactivating substances. Record on the storage vial the expiration date and date of preparation of the working wash buffer. The working wash buffer can be stored for one week at 2-8°C. - Smaller volume users may prepare less than 1 L of working wash buffer at a time if desired. If diluting only a portion of the wash buffer concentrate, check concentrate for crystallization. If crystallization has occurred during storage, warm the wash buffer concentrate to 37°C and mix well to eliminate crystals before removing aliquot for dilution. Note - All lots of wash buffer concentrate are interchangeable. Working wash buffer containers should be thoroughly cleaned with 70% ethanol and thoroughly rinsed with distilled or deionized water before preparation of the next batch of working wash buffer. # 7. REAGENT STORAGE AND HANDLING INSTRUCTIONS - Store the test components in the refrigerator at 2-8°C away from intense light. Allow them to reach room temperature (20-25°C) before use. Return the test components to the refrigerator after use. - Do not expose the test components to intense light, direct sunlight, or temperatures above 25°C. Do not freeze the kit. - When stored as directed, test components will remain stable until expiration dates printed on their labels. - Keep unused coated strips sealed in their pouches until time for use. Allow the pouch to reach room temperature (20-25°C) before opening it. Return any unused strips to the pouch as soon as possible; seal the pouch with the pouch sealer and refrigerate pouch at 2-8°C. - After dilution, the working enzyme tracer can be stored for one week at 2-8°C. - After dilution, the working wash buffer can be stored for one week at 2-8°C. ## 8. REAGENT INSTABILITY OR DETERIORATION - The chromogen/substrate may have a slightly blue tinge. If the chromogen/substrate turns a darker blue, it may have become contaminated and should be discarded. - Any reagent that contains visible particulate matter should be discarded. ## 9. SPECIMEN COLLECTION AND PREPARATION • This assay is not designed to test body fluids other than human serum or plasma. - Specimens containing precipitate may give inconsistent test results. Do not test specimens containing particulate material, or grossly hemolyzed or lipemic specimens. - The testing of heat inactivated samples is not recommended. - There is a specimen dilutional effect with citrated plasma due to the liquid nature of this anticoagulant. Borderline or high-negative results obtained from citrated specimens should be retested using serum as the matrix. - Each assay requires 50 μ L human serum or plasma. EDTA, citrate or heparin anticoagulants have been tested and may be used with this assay. Follow manufacturer's instructions carefully when using plasma collection containers with anticoagulants. - Samples that are to be used fresh may be stored for up to two hours at 2-8°C in the presence of clots. Serum separated from the clot may be stored at 2-8°C up to 48 hours, but then must be frozen and stored deep-frozen (at -20°C or below) in sterile containers until use (12). If sample is stored frozen, mix thawed sample well before testing. It has been shown that up to three freeze-thaw cycles do not interfere with the assay. - For shipping, specimens should be frozen at -20°C or below and shipped with dry ice. Temperature level during entire shipment should be no greater (warmer) than -20 °C. Pack specimens in compliance with government regulations covering the transportation of etiologic agents (13). #### 10. MANUAL ASSAY PROCEDURE #### **Materials Provided** ## ETI-AB-COREK PLUS Coated Strips Enzyme Tracer (Human) Tracer Diluent Calibrator (Human) Negative Control (Human) Positive Control (Human) Neutralizing Solution (Recombinant HBcAg) Incubation Buffer Wash Buffer (Concentrate) Chromogen/Substrate Stop Solution Strip Sealers Plate Sealers Pouch Sealer. ## **Materials Required But Not Provided** Microwell plate washer - The following instrument specifications are recommended for the kit performance: Volume dispensed: $350-370 \mu L$ Number of wash cycles: 5 Soak time: 30 seconds Aspirate the last aliquot of dispensed liquid: yes. Note - The volume of each microwell is ca. 400 µL. Make sure the volume of working wash buffer dispensed into each well does not cause the wells to overflow. If the wells overflow, set the washer to dispense less working wash buffer. Microwell plate reader - The following instrument specifications are recommended for the kit performance: Wavelength: dual wavelength, 450 nm and 600-650 nm Bandwidth: ≤ 10 nm Absorbance range: 0 absorbance units to \geq 3 absorbance units Repeatability: better than or equal to 0.005 absorbance units, or 1%, whichever is greater Linearity or accuracy: better than or equal to 0.010 absorbance units, or 2%, whichever is greater Drift: less than 0.005 absorbance units per hour. Incubator, 37°C ± 1°C. Note - Gravity convection incubators are recommended. Forced-air incubators may cause edge effects. Do not use water baths as incubators. Micropipettes with disposable clean tips (50 μL and 100 μL). Note - Suggested specifications for micropipetters (based on gravimetric testing) are: 50 μ L: accuracy \pm 3%, precision 2% 100 μ L: accuracy \pm 2%, precision 1%. Miscellaneous clean glass or plastic containers Hazardous waste disposal materials Disposable gloves Distilled or deionized water Pipetter-diluter (optional) Multichannel pipetter (optional) Pipette tips for multichannel pipetter (if multichannel pipetter is used) Disposable reagent reservoirs (if multichannel pipetter is used) Printer compatible with microwell reader. Automated Procedure Using Biochem Immunosystems Labotech/ETI-LAB Instrument See the Labotech (ETI-LAB) instrument Instruction Manual. # **Assay Procedure** Perform all assay steps in the order given and without any delays between the steps. A cutoff value is calculated for each plate based on the absorbance values of the calibrators run on that plate. A maximum of one plate should be set up (completed through the first incubation step) at a time. If multiple plates are being run as a batch, each plate must be treated as a single entity; i.e., the calibrators, controls and patient specimens for the plate must be added and the incubation time started before moving on to the next plate. Proper instrument maintenance is critical for good assay performance. Follow the manufacturer's instructions for performing instrument warm-up, quality control, calibration and maintenance procedures on all equipment used in this assay. Note - All steps must be completed within
four hours. Calibrator, positive and negative controls must be run with each plate of patient specimens. 1. Prepare assay reagents. Allow all test components to reach room temperature (20-25°C). Prepare working wash buffer and working enzyme tracer according to the directions given in Section 6, Reagent Preparation. Refer to the chart in Section 6 to ensure preparation of sufficient reagent volumes for the number of tests included in the run. **Caution -** After bringing incubation buffer to room temperature, check if crystallization has occurred during storage. If crystals are present, warm the incubation buffer to 37°C and mix well to eliminate crystals before using. 2. Prepare coated plate. Prepare enough microwells for the calibrators, controls and patient samples to be tested. Allow one blank well containing only chromogen/substrate and stop solution in well A1. Allow one well for each patient sample. The calibrators must be tested in triplicate and the negative and positive controls tested in singlet. Calibrators are to be placed in wells B1, C1 and D1; negative control is to be placed in well E1; positive control is to be placed in well F1 (for details, refer to the recommended plate map at the end of this section). Test calibrator and controls as you would patient specimens. Coated strips may be separated. Avoid handling the bottoms of the microwells because scratches or marks could affect the reading of test results. Store unused strips in their original pouch, seal the pouch carefully, and refrigerate at 2-8°C. - 3. Add incubation buffer. Add 50 µL incubation buffer to all microwells (except for the blank well). - **4.** Add samples and controls. If sample was stored frozen, mix thawed sample well (vortex) before proceeding. Add 50 μ L of each calibrator, control or sample to its respective microwell. To avoid cross-contamination, use a clean micropipette tip to dispense each calibrator, control or specimen. Record the microwell position of each calibrator, control or patient specimen on a laboratory data sheet. Incubation buffer is light blue in color. On addition of calibrators, controls or samples, the color will turn to green or dark blue. This color change may vary from sample to sample, but it will always be visible. - 5. Add neutralizing solution. Add 50 μ L recombinant HBcAg to all microwells (except for the blank well). - **6.** Incubate. Cover the microwells with a plate or the strip sealer provided with this kit. Use a roller to affix the sealer or press firmly by hand around microwell and plate edges to ensure that the sealer is firmly attached over the entire strip or plate. Tap the coated plate gently to release any air bubbles trapped in the liquid making sure samples do not splash onto the sealer. Ensure that all microwells are filled equally. Incubate the microwells for 2 hours \pm 10 minutes at 37°C \pm 1°C. - 7. Wash coated plate. Remove and discard the sealer. Aspirate the liquid from the microwells and wash each well five times as follows: Deliver 350-370 μL of working wash buffer to each microwell, let the wells soak for 30 seconds, and then aspirate the working wash buffer completely from each microwell. Microwell plate washers vary by manufacturer. Make sure the volume of working wash buffer dispensed into each well completely fills the well but does not cause the well to overflow. - 8. Remove excess working wash buffer. Ensure that all microwells are aspirated completely before proceeding. With some washers it may be necessary to invert the microplate and tap it forcefully on a paper towel to effectively remove residual working wash buffer. - 9. Add working enzyme tracer. Immediately add 100 μ L working enzyme tracer to each well (except for the blank well). - 10. Incubate. Cover the microwells with a plate or the strip sealer provided with this kit. Ensure that sealer is applied correctly (see Step 6). Tap the coated plate gently to release any air bubbles trapped in the liquid. Ensure that all microwells are filled equally. Incubate the microwells for 60 ± 5 minutes at $37^{\circ}C \pm 1^{\circ}C$. # Warning - Timing of this incubation step is critical. - 11. Wash coated plate. Remove and discard the sealer. Aspirate the working enzyme tracer from the microwells and wash them as described in Steps 7 and 8. - 12. Add chromogen/substrate. Immediately add 100 μ L chromogen/substrate to all microwells, including the blank well. Note - The chromogen/substrate may have a slightly blue tinge. However, if it turns a darker blue, it may have become contaminated and should be discarded. - 13. Incubate. Incubate the microwells for 30 \pm 2 minutes at room temperature (20-25°C). Avoid exposing the microwells to direct or intense light. Do not exceed the time limits of this incubation. - 14. Add stop solution. Add 100 μL stop solution to each microwell in the same order as chromogen/substrate was added. - 15. Read results. Within one hour after addition of stop solution, read the absorbance values of the calibrators, negative control, positive control, and samples with the microwell reader set at 450/630 nm in the bichromatic mode. If time before reading exceeds one hour, the tests must be discarded and specimens retested. Check for and remove air bubbles before reading results. Record the absorbance value for each calibrator, control and sample. Note - Blank the instrument on the blank well. The absorbance of the blank well containing only chromogen/substrate and stop solution (see Step 2 in Section 10, Procedure) is evaluated as described in the QC section. The value for the blank well should be recorded and subtracted from each calibrator, control and sample value before calculating mean values and cutoff, and before interpreting results. - 16. Perform assay quality control procedures. Before evaluating results, perform quality control procedures (see Section 11, Quality Control). - 17. Perform equipment quality control and maintenance procedures. Proper instrument maintenance including calibration is critical for good assay performance. Follow the manufacturer's instructions for performing quality control and maintenance procedures on all equipment used in this assay. # **Recommended Plate Map** | • | 1 | 2 | 3 | 4 | 5 | 6 | . 7 | 8 | 9 | 10 | 11 | 12 | |---|------|------------|---|---|---|---|-----|---|---|----|----|-----| | Α | BLK | S3 | | | | | | | | | | | | В | CAL1 | S4 | | | | | | | | | | | | С | CAL2 | S5 | | | | | | | | | | | | D | CAL3 | S6 | | | | | | | | | | | | E | NC | S 7 | | | | | | | | | | | | F | PC | S8 | | | | | | | | | | | | G | S1 | etc. | | | | | | | | | | S89 | | Н | S2 | | | | | | | | | | | S90 | # 11. QUALITY CONTROL The negative and positive controls are intended to monitor for substantial reagent failure. The positive control will not ensure precision at the assay cutoff. The quality control material furnished is in a serum matrix. It may not adequately control the assay for plasma specimens. The user should provide alternate control material for testing of plasma matrices. Additional controls may be tested according to guidelines or requirements of local, state, and/or federal regulations or accrediting organizations. Use the following steps to validate quality control. References 14 and 15 provide guidance on quality control recommendations. Record the results on the QC Verification Worksheet provided for the assay. Compute the mean absorbance value for the calibrator. Always evaluate mean calibrator value and negative and positive control values for each plate when running more than one plate in a batch. Be sure to compare the absorbance value of each patient sample with the cutoff value computed for the plate containing that sample. #### 1. Evaluate the absorbance value of the substrate blank. Blank the instrument on the blank well containing only chromogen/substrate and stop solution (see Step 15 in Section 10, Procedure). The absorbance value for the blank well must be between 0.000 and 0.150 for the assay to be valid. If the absorbance value of the substrate blank is less than 0.000 or greater than 0.150, the run must be repeated. Note - Subtract the substrate blank absorbance value from each absorbance value before performing the following evaluations. # 2. Evaluate the mean calibrator absorbance value (Cal \bar{x}). Each calibrator absorbance value (after subtraction of the blank) must be greater than 0.500 and less than 2.500. If one of the calibrator absorbance values does not meet this criterion, it should be discarded and the mean value calculated using the remaining two values. If more than one calibrator absorbance values do not meet this criterion, the run is invalid and must be repeated. Example 1: Calculation of mean of calibrators | Calibrator well | Absorbance | Minus blank absorbance | Final calibrator absorbance | |------------------|------------|------------------------|-----------------------------| | B1 | 1.704 | 0.030 | 1.674 | | C1 | 1.636 | 0.030 | 1.606 | | D1 | 1.825 | 0.030 | 1.795 | | Total absorbance | | | 5.075 | Mean of calibrators (Cal $$\bar{x}$$) = $\frac{\text{Total absorbance}}{3} = \frac{5.075}{3} = 1.692$. The mean calibrator absorbance value must be greater than 0.500 and less than 2.500. $$0.500 < Cal \, \bar{x} < 2.500$$ If the mean calibrator absorbance value does not meet this criterion, the run is invalid and must be repeated. # 3. Evaluate the negative control absorbance value (NC). After subtracting the substrate blank absorbance, the negative control absorbance value must be greater than 0.500 and less than 2.500. If the negative control absorbance value does not meet this criterion, the run is invalid and must be repeated. # 4. Evaluate the positive control absorbance value (PC). After subtracting the substrate blank absorbance, the positive control absorbance value must be greater than -0.020 and less than 0.350. If the positive control absorbance value
does not meet this criterion, the run is invalid and must be repeated. # 5. Evaluate the difference between the negative control absorbance value and the positive control absorbance value. The difference between the negative control absorbance value and the positive control absorbance value must be greater than 0.250. $$NC - PC > 0.250$$ If the difference between the negative control absorbance value and the positive control absorbance value does not meet this criterion, the run is invalid and must be repeated. Example 4: Calculation of difference between NC and PC Negative control absorbance (NC) = 1.793 Positive control absorbance (PC) = 0.128 Difference (NC - PC) = 1.793 - 0.128 = 1.665 # 12. QUALITY CONTROL PROBLEM SOLVING It is important to follow the assay procedure precisely. If calibrator or control values are not within acceptable limits (see Section 11, Quality Control) or results differ markedly from those expected, check these assay variables: - Check incubator, incubation times, and temperatures. - A properly functioning washer is critical to the assay. Ensure that the washer is filling and aspirating all wells, that no probes are plugged, and that the probes are placed correctly in the microwells. No fluid should be left in the wells at the end of the wash step. - Be sure that wells do not dry out between washing and addition of the next reagent. Add reagent within a few minutes of removal of the plate from the washer. If a probe (or probes) on the washer becomes plugged during washing, identify the affected microwell(s) but continue with the assay procedure. Retest the affected specimen(s). To unplug probes, refer to the washer operator's manual. - Check that all reagents and specimens are at room temperature (20-25°C) before starting the assay. - Check that all reagents are within the expiration date, that appropriate assay kit components and ancillaries are used, and that there are no visible signs of contamination such as cloudiness or precipitates. - Avoid cross-contamination of reagents and wells. If multichannel pipette tips have been contaminated, replace the tips. # 13. INTERPRETATION OF RESULTS The presence or absence of anti-HBc is determined by comparing the absorbance values of patient samples with a cutoff value. The cutoff value is determined for each plate based on the absorbance values of the calibrators run on that plate. Be sure to compare the absorbance value of each patient sample with the cutoff value computed for the plate containing that sample. #### Calculation of Cutoff Value The cutoff value is determined by multiplying the mean absorbance of the calibrator values by 0.300. CUTOFF = $0.300 \times \text{Cal } \times$ Example 2: Calculation of cutoff value Calibrator mean absorbance 1.692 Constant x 0.300 Cutoff value for this run 0.508 The cutoff was established by testing 348 samples (174 volunteer blood donors and 174 hospitalized patients) with three lots of ETI-AB-COREK PLUS. The results were examined as specimen absorbance-to-calibrator ratios (S/Cal). In this assay, S/Cal values are inversely related to reactivity. In the apparently healthy adult (volunteer donor) population negative samples, 95% had S/Cal greater than 0.5; in the hospitalized patient population negative samples, 95% had S/Cal greater than 0.6 and 99% had S/Cal greater than 0.5. This confirmed the cutoff calculation of calibrator mean absorbance x 0.300. # Interpretation of Results (Manual or Labotech/ETI-LAB assay) | Absorbance Values | Result | Interpretation | | | | | | |---|-----------|--|--|--|--|--|--| | Absorbance > 110% x Cutoff Negative Absorbance within Equivocal 90-110% of Cutoff | | Total anti-HBc not detected by ETI-AB-COREK PLUS. This result should not be used alone but in conjunction with other hepatitis B serological markers to determine disease state. | | | | | | | Absorbance within 90-110% of Cutoff | Equivocal | Presence of total anti-HBc indeterminate by ETI-AB-COREK PLUS. Specimen should be retested using ETI-AB-COREK PLUS kit to establish presence or absence of antibody. If a specimen is found repeatedly equivocal, the pattern of other hepatitis B serological markers should be used to identify status of disease, or another sample should be collected and tested at a later date. | | | | | | | Absorbance < 90% x Cutoff | Positive | Total anti-HBc detected by ETI-AB-COREK PLUS. This result should not be used alone but in conjunction with other hepatitis B serological markers to determine disease state. | | | | | | **Note** - The magnitude of the measured result, below the cutoff, is not indicative of the total amount of antibody present. Due to the expression of the recombinant HBcAg in E. coli, samples containing antibodies to E. coli may cause false positive results. # Example 3: Interpretation of samples Cutoff = 0.508 Equivocal Zone = 0.457-0.559 Sample No. 1 absorbance = 1.123 Sample No. 2 absorbance = 0.190 Sample No. 1 should be considered negative for total anti-HBc; sample No. 2 should be considered positive for total anti-HBc. ## 14. LIMITATIONS OF THE PROCEDURE - Results obtained from immunosuppressed patients should be interpreted with caution. - This assay is not designed to test body fluids other than human serum or plasma. - Any laboratory test result should be interpreted in conjunction with the patient's clinical presentation and the results of other diagnostic tests. A negative result on a given laboratory assay does not by itself rule out the possibility of infection. - The prevalence of the analyte will affect the assay's predictive value. - Assay performance characteristics have not been established when the ETI-AB-COREK PLUS anti-HBc assay is used in conjunction with the other manufacturers' assays for specific HBV serological markers. Users are responsible for establishing their own performance characteristics. - Performance characteristics have not been established for any other automated instrument than the Biochem Immunosystems Labotech/ETI-LAB automated instrument. If another automated instrument is used the user is responsible for establishing their own assay performance characteristics. - Specimens from patients receiving preparations of mouse monoclonal antibodies for therapy or diagnosis may contain human anti-mouse antibodies (HAMA). Such specimens may produce false positive result when tested with an indirect competitive immunoassay such as the DiaSorin ETI-AB-COREK PLUS assay. Specimens from these individuals should not be tested with this assay. - The affinity and/or avidity of IgG or IgM antibody to HBc have not been determined for this assay. - Individuals with antibodies to *E. coli* could produce false positive assay results due to the expression of the recombinant HBcAg in *E. coli*. - The analytical sensitivity of the ETI-AB-COREK PLUS assay has been determined to be approximately 0.18 PEI U/mL. ## 15. EXPECTED VALUES The 236 prospective samples used in the expected values study for the ETI-AB-COREK PLUS assay were from patients who were sent to the laboratory for HBV testing. Of those, 100 (42%) were frozen and 136 (58%) were fresh. The patients represented Florida, Georgia, Pennsylvania, California, Utah, and the southeastern US. The group was 69% (162/236) female, 29% (68/236) male, and 2% (6/236) unspecified; the ethnicity of the patients was unspecified. The ages ranged from 5 to 88 years old, with 6 samples unspecified. The percent DiaSorin ETI-AB-COREK PLUS positive results in these samples was 24%. The table below summarizes the percent ETI-AB-COREK PLUS positive and negative results by gender and age range. There were 6 samples for which gender and age were not reported; they were all positive. There were 6 other samples for which age was not reported, two were from females and four were from males; they were one positive and five negative. These 12 results were not included in the table. | | . [| | DiaSorin ETI-AB-COREK PLUS | | | | | | | | | |-----------|--------|---|----------------------------|----|----|---|----|-------|--|--|--| | | Ī | | + | | • | | =* | TOTAL | | | | | Age Range | Gender | n | % | n | % | n | % | | | | | | 0-9 | F | 1 | 50 | 1 | 50 | 0 | 0 | 2 | | | | | | М | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 10-19 | F | 4 | 24 | 13 | 76 | 0 | 0 | 17 | | | | | | М | 1 | 50 | 1 | 50 | 0 | 0 | 2 | | | | | 20-29 | F | 6 | 12 | 44 | 86 | 1 | 2 | 51 | | | | | | М | 5 | 38 | 8 | 62 | 0 | 0 | 13 | | | | | 30-39 | F | 5 | 10 | 44 | 90 | 0 | 0 | 49 | | | | | | М | 6 | 35 | 10 | 59 | 1 | 6 | 17 | | | | 13 | | | | | DiaSorin | ETI-AB-C | OREK P | LUS | | | |-------|---|----|----|----------|----------|--------|-----|-------|--| | | | | + | | - | | E* | TOTAL | | | 40-49 | F | 9 | 45 | 11 | 55 | 0 | 0 | 20 | | | | М | 7 | 50 | 7 | 50 | 0 | 0 | 14 | | | 50-59 | F | 1 | 20 | 4 | 80 | 0 | 0 | 5 | | | | М | 5 | 63 | 3 | 38 | 0 | 0 | 8 | | | 60-69 | F | 0 | 0 | 3 | 100 | 0 | 0 | 3 | | | | М | 0 | 0 | 2 | 100 | 0 | 0 | 2 | | | 70-79 | F | 2 | 20 | 8 | 80 | 0 | 0 | 10 | | | | М | 3 | 60 | 2 | 40 | 0 | 0 | 5 | | | 80-89 | F | 0 | 0 | 3 | 100 | 0 | 0 | 3 | | | | М | 0 | 0 | 3 | 100 | 0 | 0 | 3 | | | TOTAL | | 55 | 24 | 167 | 75 | 2 | 1 | 224 | | **High Risk Population** Single repository samples belonging to high-risk populations (66 hemodialyzed patients, 148 hemophiliacs, 150 IV drug users) were tested with the DiaSorin ETI-AB-COREK PLUS assay to determine frequency of positive results in that population. The group was 12% (42/364) female, 69% (252/364) male, and 19% (70/364) unspecified,
with ages ranging from 19 to 87 years old. No geographical locations were specified. The table below summarizes the ETI-AB-COREK PLUS results. The data in the table represent the number of specimens in each category. ## **High Risk Population** | Population | Frequency of Positive Results | |-----------------------|-------------------------------| | | (# Positive/Total # Samples) | | IV drug users | 98/150 = 65.3% | | Hemophiliacs | 46/148 = 31.1% | | Hemodialysis patients | 8/66 = 12.1% | | TOTAL | 152/364 = 41.8% | ## **Acute Serial Panels** One hundred twenty-four (124) archived serial samples from nine individuals were tested. Most (8/9) of these individuals were defined as being acutely infected by the appearance of HBsAg and HBeAg with the subsequent appearance of IgM anti-HBc, total anti-HBc, anti-HBe, and anti-HBs. One individual had detectable HBsAg, but did not have detectable HBeAg in any specimen. However, this individual did seroconvert for anti-HBe. The specimens were collected from individuals undergoing plasmaphereses for further manufacturing purposes. Three individuals were found to be infected with HBV during the first plasmaphereses and others became infected with HBV during subsequent plasmaphereses. It is unknown how long these three initially HBsAg reactives were infected prior to the first plasmaphereses. All nine individuals underwent sequential plasmaphereses after becoming HBV infected. However, the timing of subsequent plasmaphereses varied from individual to individual. The specimens draw times were normalized to represent the day that HBsAg was first detected by an FDA-licensed assay as day 0. Draw days ranged from day 0 (HBsAg first detected) through day 355 post-day 0. Since all panels did not contain the same draw day, sample results were grouped within day intervals (e.g. days 0, 1-10, 11-20, etc., representing days since first detection of HBsAg). The results are summarized in the following table and graph. All specimens were reactive for total anti-HBc by the DiaSorin assay after day 90. In the graph below the graph for the reference HBsAg percent reactive has been overlaid for reference. | Day
Range | Number
Specimens | DiaSorin Total
anti-HBc
positive | Percent
Positive | |--------------|---------------------|--|---------------------| | 0 | 9 | 1 | 11.1% | | 1-10 | 10 | 1 | 10.0% | | 11-20 | 13 | 4 | 30.8% | | 21-30 | 9 | 6 | 66.7% | | 31-40 | 10 | 7 | 70.0% | | 41-50 | 6 | 5 | 83.3% | | 51-60 | 10 | 10 | 100.0% | | 61-70 | 9 | 9 | 100.0% | | 71-80 | 6 | 6 | 100.0% | | 81-90 | 9 | 8 | 88.9% | | 91-100 | 10 | 10 | 100.0% | | 101-110 | 6 | 6 | 100.0% | | 111-120 | 4 | 4 | 100.0% | | 121-130 | 4 | 4 | 100.0% | | 131-140 | 3. | 3 | 100.0% | | 141-150 | 2 | 2 | 100.0% | | 151-160 | 0 | 0 | NA | | 161-170 | 1 | 1 | 100.0% | | 171-180 | 0 | 0 | NA | | 181-190 | 1 | 1 | 100.0% | | 191-200 | 1 | 1 | 100.0% | | > 200 | 1 | 1 | 100.0% | ## 16. PERFORMANCE DATA ## Clinical Samples Since the majority of studies were performed on pre-selected retrospective specimens, no calculations for the assay's positive and negative predictive values may be performed or inferred. **Prospective Samples**. A study of 136 prospective specimens was conducted. These specimens represented individuals who were sent to the laboratory for hepatitis testing. Specimens were collected at a reference laboratory and assayed at the California clinical trial site. The patients were 86% (117/136) female and 14% (19/136) male. The ages ranged from 5 to 77 years old, with three specimens not specified. The study (testing) sites were blinded to the previous specimen categorization. All testing was performed by the manual ETI-AB-COREK PLUS procedure. Specimens were characterized by testing with six HBV serological markers (HBsAg, HBeAg, IgM anti-HBc, total anti-HBc, anti-HBe, anti-HBs) using FDA-licensed or approved assays. Testing with these assays followed the FDA-licensed or approved procedure, including confirmation by neutralization of repeatably reactive HBsAg samples. <u>Results by Specimen Classification</u>: After study completion all samples were assigned a specimen classification based on the patterns of the six HBV serological markers established by the reference assays. Based on these serological marker patterns, the samples were categorized into the HBV classifications described in the table below. There were six unique HBV marker patterns observed in the ETI-AB-COREK PLUS prospective clinical studies. | Characterization Based On Single Point Specimen | HbsAg | HBeAg | IgM anti-
HBc | Total anti-
HBc | anti-HBe | anti-HBs | n | |---|-------|-------|------------------|--------------------|----------|----------|-----| | Chronic Infection | + | - | - | + | + | - | . 1 | | Recovery | - | - | - | + | + | + | 2 | | Past Infection | - | - | - | + | • | + | 4 | | | • | - | - | + | - | - | 4 | | HBV Vaccine Response | • | - | - | - | - | + | 38 | | Not Previously Infected with HBV | - | | - | - | - | - | 87 | Based on the above classifications the ETI-AB-COREK PLUS anti-HBc results for the prospective samples were compared to a reference assay's anti-HBc results. The following table shows this comparison and percent agreement with 95% confidence intervals with the reference anti-HBc results. # **Prospective Samples Comparison** | | | Reference anti-HBc | | | | | | |-------------------------|-----------|--------------------|---|----------|-------|--|--| | • | | - | | + | | | | | Reference Serology | ETI-AB-CC | ETI-AB-COREK PLUS | | REK PLUS | TOTAL | | | | Classification | _ | + . | | + | | | | | Chronic infection | 0 | 0 | 0 | 1 | 1 | | | | Recovery | 0 | 0 | 0 | 2 | 2 | | | | Past infection | 0 | 0 | 2 | 6 | 8 | | | | HBV vaccine response | 37 | 1 . | 0 | 0 | 38 | | | | Not previously infected | 87 | 0 | 0 | 0 | 87 | | | | Grand Total | 124 | 1 | 2 | 9 | 136 | | | | Prospective Samples: | | |----------------------|---| | Chronic Infection | Positive agreement with reference assay results = 100% (1/1) | | • | 95% CI = 2.5 to 100% | | | Negative agreement with reference assay results = N/A (0/0)
95% CI = N/A | | Recovery | Positive agreement with reference assay results = 100.0% (2/2) | | • | 95% CI = 15.8 to 100.0%N/A | | | Negative agreement with reference assay results = N/A (0/0) | | | 95% CI = N/A | | HBV Vaccine | Positive agreement with reference assay results = NA (0/0) | | Response | 95% CI = NA | | | Negative agreement with reference assay results = 97.4% (37/38) | | • | 95% CI = 86.2 to 99.9% | | Past Infection | Positive agreement with reference assay results = 75.0% (6/8) | | | 95% CI = 34.9 to 96.8% | 43 Negative agreement with reference assay results = N/A (0/0) 95% CI = N/A Not Previously Infected Positive agreement with reference assay results = NA (0/0) 95% CI = NA Negative agreement with reference assay results = 100.0% (87/87) 95% CI = 95.8 to 100.0% Retrospective Samples. Retrospective studies were carried out at three clinical laboratories in the United States (California, Missouri, and Minnesota) and at DiaSorin (Italy) to assess the performance of the ETI-AB-COREK PLUS assay in detecting anti-HBc. The study set included 650 frozen repository samples (the majority of which were purchased from commercial vendors) from the following populations: - patients with chronic hepatitis B infection (HBsAg positive for greater than six months) 111 frozen repository samples; - patients with serologically diagnosed hepatitis B infection (acute, chronic, asymptomatic, convalescent, etc.) 82 frozen repository samples; - patients sent to the laboratory for hepatitis B testing 100 frozen repository samples; - a general hospital patient population 357 frozen repository samples. The specimens represented Midwestern (2%), Southeastern (25%), Western (13%), and Northeastern US (2%), outside of the US (1%), and unspecified (57%). The group was 44% (287/650) female, 42% (270/650) male, and 14% (93/650) unspecified. Approximately 13% (84/650) were Caucasian, 4% (27/650) were African American, < 1% (5/650) were Hispanic, < 1% (3/650) were Asian, and 82% (531/650) were unspecified. The ages ranged from 5 to 98 years old, with 131 specimens not specified. The study (testing) sites were blinded to the previous specimen categorization. All testing was performed by the manual ETI-AB-COREK procedure. Specimens were characterized by testing with six HBV serological markers (HBsAg, HBeAg, IgM anti-HBc, total anti-HBc, anti-HBe, anti-HBs) using FDA-licensed or approved assays. Testing with these assays followed the FDA-licensed or approved procedure with the exception of the HBsAg assay at two of the three sites. At these sites, the majority of specimens that were initially HBsAg-positive were repeated in duplicate, however the repeatedly reactive specimens were not confirmed by the licensed HBsAg confirmation assay at the two sites. Therefore, true HBsAg result was determined in one of three ways: 1) confirmed by reference assay neutralization during clinical trials, 2) based on a statement by the attending physician that HBsAg was positive for greater than 6 months, or 3) information provided by the vendor regarding confirmatory testing performed at their location or by the material source facility. Results by Specimen Classification: After study completion all samples were assigned a specimen classification based on the patterns of the six HBV serological markers established by the reference assays. Based on these serological marker patterns, the samples were categorized into the HBV classifications described in the table below. There were 35 unique HBV marker patterns observed in the ETI-AB-COREK PLUS retrospective clinical studies. | Characterization Based On Single Point Specimen | HbsAg | HBeAg | lgM anti-
HBc | Total
anti-
HBc | anti-HBe | anti-HBs | n | |---|-------|-------|------------------|--------------------|----------|----------|----| | Acute infection | + | + | + or 1* | + | - | - | 52 | | | + | - | + or I | + | + | - | 4 | | | + . | - | - | - | • | - | 2 | | | + | + | - | - | - | - | 2 | | Chronic Infection | + | - | - | + | + | - | 82 | | | + | + | _ | + | - | - | 21 | | Characterization Based On Single
Point Specimen | HbsAg | HBeAg | IgM anti-
HBc | Total anti-
HBc | anti-HBe | anti-HBs | n . | |--|-------|--------|------------------|--------------------|----------|----------|-----| | | + | - | - | + | - or l | - | 23 | | | + | + | + | + | - | + | 4 | | | + | + | - or I | + | - | + | 2 | | | + | - | - | + | + | + | 2 | | | + | + | - | + | + or i | + | 2 | | | + | + | + | + | + | + | 1 | | | + | + | - | + | + | | 1 | | | + | - | - | + | • | + | 1 | | | - | - | - | + | + or 1 | + | 40 | | | • | - | - | + | + | - | 6 | | Recovery | - | - | + | + | + | - | 2 | | | - | • | + or i | + | + | + | 2 | | | - | - or I | - | + | - | + | 12 | | Past Infection | • | _ | - | + | - | - | 9 | | HBV Vaccine Response | - | - | - | - | - | + | 20 | | Not Previously Infected with HBV | - | - | - | - | - | - | 343 | | | - | + or l | - | - | - | - | 13 | | Uninterpretable | • | + | - | + | - | + | 2 | | | • | + | - | + | + | + | 1 | | | - | ı | - | + | - | - | 1 | ^{*}I = indeterminate result Based on the above classifications the ETI-AB-COREK PLUS anti-HBc results for the retrospective samples were compared to a reference assay's anti-HBc results. The following table shows this comparison and percent agreement with 95% confidence intervals with the reference anti-HBc results. **Retrospective Samples Comparison** | | | Reference anti-HBc | | | | | | | |-------------------------|-------|--------------------|------|-------|---------|------|-------|--| | Reference Serology | | | | | + | | TOTAL | | | Classification | ETI-A | B-CORE | PLUS | ETI-A | B-COREK | PLUS | | | | | - | + | E* | _ | + | E | | | | Acute infection | 3 | 0 | 1 | 0 | 56 | 0 | 60 | | | Chronic infection | 0 | 0 | 0 | 2 | 137 | 0 | 139 | | | Recovery | 0 | 0 | 0 | . 0 | 50 | 0 | 50 | | | Past infection | 0 | 0 | 0 | 3 | 17 | 1 | 21 | | | HBV vaccine response | 15 | 4 | 1 | 0 | 0 | 0 | 20 | | | Not previously infected | 333 | 9 | 1 | 0 | 0 | 0 | 343 | | | Uninterpretable | 12 | . 1 | 0 | 0 | 4 | 0 | 17 | | | Grand Total | 363 | 14 | 3 | 5 | 264 | 1 | 650 | | ^{*} Equivocal result **Acute Infection** Positive agreement with reference assay results = 100% (56/56) 95% CI = 93.6 to 100% | | Negative agreement with reference assay results = 75.0% (3/4) 95% CI = 19.4 to 100% | |----------------------------|--| | Chronic
Infection | Positive agreement with reference assay results = 98.6% (137/139) 95% CI = 94.9 to 99.8% | | | Negative agreement with reference assay results = NA (0/0)
95% CI = NA | | _ | Positive agreement with reference assay results = 100% (50/50) | | Recovery | 95% CI = 92.9 to 100% | | | Negative agreement with reference assay results = NA (0/0)
95% CI = NA | | HBV Vaccine
Response | Positive agreement with reference assay results = NA (0/0)
95% CI = NA | | • | Negative agreement with reference assay results = 75% (15/20)
95% CI = 50.9 to 91.3% | | Past Infection | Positive agreement with reference assay results = 81.0% (17/21) 95% CI = 58.1 to 94.6% | | | Negative agreement with reference assay results = NA (0/0)
95% CI = NA | | Not Previously
Infected | Positive agreement with reference assay results = NA (0/0) 95% CI = NA | | | Negative agreement with reference assay results = 97.1% (333/343) 95% CI = 94.7 to 98.6% | | Uninterpretable | Positive agreement with reference assay results = 100% (4/4) 95% CI = 39.8 to 100% | | | Negative agreement with reference assay results = 92.3% (12/13) 95% CI = 64.0 to 99.8% | Instrument Comparison of Biochem Immunosystems Labotech/ETI-LAB to the Manual Method: An instrument application study was conducted at DiaSorin, Saluggia Italy, to evaluate the performance of the ETI-AB-COREK PLUS assay on the Biochem Immunosystems Labotech/ETI-LAB, an automated microplate processing instrument, compared to the manual analysis. The Paul-Ehrlich-Institut (PEI) Standard, 12 serum samples near the ETI-AB-COREK PLUS cutoff and samples from the clinical trials (29 suspected hepatitis B patients and 11 apparently healthy adults) were tested in parallel manually and on the Labotech. Serial dilutions of the PEI Standard were prepared in fetal calf serum to obtain a panel ranging from high concentration to below the analytical sensitivity of the assay. The diluted Standard samples were tested in duplicate, one run per day for three days both manually and on the Labotech. Due to the requirement that assay cutoff be established for each plate, reproducibility was evaluated based on specimen absorbance-to-cutoff ratios (S/CO) rather than absolute absorbance values. In this assay, the S/CO is inversely related to reactivity. The 95% confidence intervals were established for the S/CO values of each point of the Standard-referenced curve and therefore the analytical endpoint sensitivity was defined (first dilution with S/CO < 0.9). A graph summarizing these results is presented below: The 12 samples near the cutoff were tested in triplicate, one run per day for three days both manually and on the Labotech. The samples from the clinical trials were tested in singlet in one run on one day, both manually and on Labotech. The mean, the standard deviation and the coefficient of variation (CV%) of the S/CO values were computed by the different components of variability for each of the tested specimens. A summary of the data is presented in the following table. | | Ma | anual | | Laboted | ch/ETI-LAE | 3 | |--|---|-------------|------------|---|------------|------------| | Analytical Endpoint Sensitivity
(0.18 PEI U/mL) | Mean | W/R
%CVª | D/D
%CV | Mean | W/R
%CV | D/D
%CV | | S/CO
[95% CI] ^b | 0.61
[0.53 - 0.69] | 4.8 | 13.2 | 0.64
[0.53 - 0.74] | 15.2 | 10.8 | | 12 Cutoff Samples
S/CO
Range of mean
S/CO | 0.95
0.60 – 1.57 | 8.3 | 5.6 | 1.08
0.75 – 1.66 | 19.1 | 15.5 | | Clinical Samples: | | | | | | | | Suspected Hepatitis B
Range of S/CO | Negative: 1.23 (1/29)
Equivocal: N/A (0/29)
Positive: 0.00 – 0.08 (28/29) | | | Negative: 1.42 (1/29)
Equivocal: N/A (0/29)
Positive: 0.00 - 0.15 (28/29) | | | | Healthy Adults
Range of S/CO | Negative: 1.36 – 2.73 (11/11) | | | Negative: 1.38 –
Equivocal: N/A (
Positive: N/A (0/ | 0/11) | 11) | ^{* %}CVs were calculated using specimen absorbance-to-cutoff ratios (S/CO) which normalized the data plate-to-plate # Reproducibility Manual Assay: Intra-assay, inter-assay, inter-lot, and inter-site variability studies were carried out on the ETI-AB-COREK PLUS kit to test the variability within runs, between runs, between days, between kit lots, and between test sites. Variability was measured on a panel of ten sera that included negative, borderline, and positive samples. Three ETI-AB-COREK PLUS kit lots were tested at three independent test sites. Due to the requirement that assay cutoff be established for each plate, reproducibility was evaluated based on specimen absorbance-to-cutoff ratios (S/CO) rather than ^b 95% CI = 95% Confidence Interval; W/R = within-run; D/D = day-to-day absolute absorbance values. In this assay, the S/CO is inversely related to reactivity. The results of that study are tabulated below. ## **Clinical Site Reproducibility Study** | ID# | - | # of Tests
per
Sample | Mean S/CO's | Within-run
%CV* | Between-run
%CV | Between-lot
%CV | Between-day
%CV | Between-site
%CV | Total | |-----|-------|-----------------------------|-------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------| | S01 | High | 102 | 0.01 | 47.14 | 68.67 | 66.82 | 42.63 | 39.68 | 126.94 | | S02 | High | 102 | 0.43 | 13.49 | 20.13 | 33.83 | 16.47 | 28.23 | 48.64 | | S03 | Low | 98 ^b | 0.51 | 9.94 | 20.80 | 40.13 | 13.29 | 24.98 | 50.19 | | S04 | Low | 102 | 0.66 | 10.09 | 19.59 | 30.47 | 14.31 | 19.78 | 46.00 | | S05 | Neg | 102 | 1.87 | 9.22 | 12.99 | 11.41 | 7.03 | 1.13 | 20.72 | | S06 | High | 102 | 0.46 | 9.32 | 19.25 | 23.22 | 10.89 | 23.04 | 32.90 | | S07 | High | 102 | 0.35 | 9.61 | 14.76 | 27.48 | 11.44 | 21.52 | 37.90 | | S08 | Equiv | 102 | 0.80 | 12.53 | 18.23 | 24.24 | 7.84 | 10.48 | 28.98 | | S09 | Equiv | 102 | 1.09 | 11.63 | 8.37 | 11.96 | 6.74 | 18.85 | 21.52 | | S10 | Neg | 102 | 3.23 | 5.80 | 9.98 | 9.36 | 3.44 | 5.81 | 16.62 | 3 %CVs were calculated using specimen absorbance-to-cutoff ratios (S/CO) which normalized the data plate-to-plate Plasma Reproducibility. A plasma reproducibility study was conducted at DiaSorin, Saluggia Italy, to evaluate the performance of the manual ETI-AB-COREK PLUS assay on serum versus a variety of plasma types. The plasma types evaluated were citrate, heparin and EDTA. Sample sets of matched serum/multiple plasma were used in the study. A sample set was prepared by spiking the same high-positive sample into each of the matrices (serum and plasmas) resulting in a total of four specimens per set around the cutoff. Several high-positive samples were used in the preparation of the 12 different near-cutoff sample sets. Six matched serum/multiple plasma samples sets were tested in triplicate in each run; thus there were two runs per day for three days, all tested in a manual mode. Due to the requirement that
assay cutoff be established for each plate, reproducibility was evaluated based on specimen absorbance-to-cutoff ratios (S/CO) rather than absolute absorbance values. In this assay, the S/CO is inversely related to reactivity. The mean, the standard deviation and the coefficient of variation (CV%) of the S/CO values were computed by the different components of variability for each of the tested specimens. The 95% confidence intervals were established for the S/CO values of all serum samples and each plasma type. A summary of the data is presented in the following table. | | Serum | Citrate | Heparin | EDTA | |-----------|-----------|----------------------|-----------|-----------| | Mean S/CO | 0.97 | 1.05 | 1.17 | 1.06 | | 95% CI* | 0.96-0.99 | 1.04-1.06 | 1.16-1.18 | 1.05-1.07 | | W/R %CV** | 8.0% | 7.7% | 6.4% | 6.4% | | D/D %CV* | 6.1% | 7.3% | 6.2% | 8.0% | | Total %CV | 9.3% | 10.2% | 8.3% | 10.1% | | | Between | matrix %CV: 9.1% | | | | | Across ma | trix total %CV: 12.6 | i% | | * 95% CI = 95% Confidence Interval; W/R = within-run; D/D = day-to-day ^b Site 1 experienced dispensing errors for Sample #3 (S03) during Day 1, Lot 3, Run 2 and Day 2, Lot 3, Run 2. Four samples were lost. ^{* %}CVs were calculated using specimen absorbance-to-cutoff ratios (S/CO) which normalized the data plate-to-plate Assay reproducibility using the Labotech has not been established. If the Labotech is used, the user should establish appropriate assay reproducibility in accordance with NCCLS EP5-A. Evaluation of Precision Performance of Clinical Chemistry Devices. # **Analytical Sensitivity** The analytical sensitivity of the assay (the smallest quantity of analyte that can be distinguished from background) was evaluated using single point serial dilutions of a standard preparation from the Paul-Ehrlich-Institut (PEI). The analytical sensitivity of the assay (last positive dilution) was determined to be 0.18 PEI U/mL (Mean Signal-to-Cutoff Ratio = 0.61; 95% Confidence Interval = 0.53 to 0.69). # **Cross-Reactivity** Of the 525 potential interfering samples, 392 (75%) were negative and 133 (25%) were positive by ETI-AB-COREK PLUS. Among the 133 positive samples, 1 was QNS for reference testing and could not be confirmed by other serological markers, 127 were positive by reference testing or review of hepatitis B marker patterns for those samples. Some equivocal samples were not repeated due to volume constraints. Percent positive was 95%. Disease was determined by serological testing, there is no guarantee that the associated antibody was present in the tested material. Interference testing with the described specimens was not performed. **Cross-Reactivity Study Results** | GROUP | n | ETI-AB-COREK PLUS
Negative or Equivocal
Samples | ETI-AB-COREK PLUS
Positive Samples | % Positive By
Additional Testing | |----------------------------------|----|---|---------------------------------------|-------------------------------------| | Acute EBV infection | 16 | 16 | 0 | - | | Acute CMV infection | 20 | 19 | 1 | 100% (1/1) | | Acute HSV infection | 10 | 9 | 1 | 100% (1/1) | | Acute toxoplasmosis | 18 | 16 | 2 | 100% (2/2) | | Acute parvovirus B19 infection | 5 | 5 | 0 | · – | | HTLV-I/II infection | 50 | 39 | 11 | 100% (11/11) | | Syphilis | 26 | 23 | 3 | 100% (3/3) | | HCV infection | 50 | 35 | 15 | 87% (13/15) | | HDV infection | 20 | 2 | 18 | 100% (18/18) | | HIV infection | 50 | 32ª | 18 | 100% (18/18) | | Acute HAV infection | 50 | 44 ^b | 6 | 100% (6/6)° | | Past HAV infection | 50 | 24 | 26 | 96% (25/26) ^d | | Rheumatoid infection (RF) + | 40 | 36 | 4 | 100% (4/4) | | Autoimmune disease including SLE | 30 | 28 | 2 | 100% (2/2) | | Autoimmune hepatitis | 5 | 5 | 0 | - | | Myeloma | 20 | 15 | 5 | 80% (4/5) ^e | | Hypergammaglobulinemia | 20 | 19 | 1 | 100% (1/1) | | Influenza vaccine | 5 | 5 | 0 | | | GROUP | n | ETI-AB-COREK PLUS
Negative or Equivocal
Samples | ETI-AB-COREK PLUS
Positive Samples | % Positive By
Additional Testing | |-------------------------|-----|---|---------------------------------------|-------------------------------------| | Elevated liver enzymes | 10 | 6 | 4 | 50% (2/4) ^f | | Non-viral liver disease | 30 | 14 | 16 | 100% (16/16) ^a | | TOTAL | 525 | 392 (75%) | 133 (25%) | 95% (127/133) | ¹ sample was equivocal by DiaSorin, not repeated. All other markers were negative, indicating not previously infected; an equivocal result is acceptable. ^d 1 QNS for reference method testing, but negative for all other serological markers, indicating recovered. # **Substances That Do Not Interfere** As recommended by NCCLS Protocol EP7 (27), the ETI-AB-COREK PLUS assay was evaluated for interference by testing the following substances. Testing was performed using matched pairs of negative donor serum and negative donor serum spiked with high-titer anti-HBc samples to obtain a result near the cutoff. None of the compounds at the levels indicated were found to interfere with the clinical interpretation of the assay in serum. No interference was found with bilirubin in plasma (EDTA, heparin or citrate), testing for interference with hemoglobin and triolein was not performed in plasma. | Compound | Concen | tration | |------------|-------------|------------| | Bilirubin | 0.35 mmol/L | 20 mg/dL | | Hemoglobin | 0.06 mmol/L | 100 mg/dL | | Triolein | 33.9 mmol/L | 3000 mg/dL | The ETI-AB-COREK PLUS assay was also evaluated for possible interference from human antimouse antibodies (HAMA). A dilutional panel was used, consisting of 21 samples prepared from a stock pool of HAMA high positive human serum. The HAMA concentrations in the samples ranged from 0 to 2975.5 ng/mL, as determined by a HAMA ELISA. In an indirect competitive assay such as the ETI-AB-COREK PLUS, interference would manifest as false positive results. No interference was seen in that all 21 dilutional samples were positive by the ETI-AB-COREK PLUS assay and confirmed by a reference method. ## 17. ABBREVIATED TEST PROCEDURE - 1. DISPENSE 50 µL INCUBATION BUFFER. - 2. DISPENSE 50 μ L CALIBRATOR, CONTROLS A ND SAMPLES INTO WELLS, LEAVING AN EMPTY WELL FOR THE BLANK. - 3. DISPENSE 50 µL NEUTRALIZING SOLUTION. ^b 1 sample was equivocal by DiaSorin, not repeated. The sample was HBsAg and total anti-HBc positive and negative for other markers by reference method, indicating recovery; DiaSorin false negative result. ^{° 3} QNS for reference method testing but reference method anti-HBs and anti-HBe positive, indicating recovery, true positive total anti-HBc. [•] anti-HBs positive and all other serological markers negative by reference method, indicating recovery; both positive and negative total anti-HBc results are acceptable. ¹ sample was QNS for reference method testing, but all other serological markers were negative, indicating past infection. 1 sample was anti-HBe positive by reference method testing, indicating recovery; false negative anti-HBc by reference method. ^f 1 samples was anti-HBc negative by reference testing but positive for anti-HBs and anti-HBe, indicating recovery, true positive total anti-HBc - 4. INCUBATE FOR TWO HOURS AT 37°C. - 5. ASPIRATE THE LIQUID. WASH THE WELLS REPEATEDLY WITH WORKING WASH BUFFER. - 6. DISPENSE 100 µL ENZYME TRACER TO EACH WELL. - 7. INCUBATE FOR 60 MINUTES AT 37°C. - 8. ASPIRATE THE LIQUID. WASH THE WELLS REPEATEDLY WITH WORKING WASH BUFFER. - 9. DISPENSE 100 µL CHROMOGEN/SUBSTRATE TO EACH WELL. - 10. INCUBATE FOR 30 MINUTES AT ROOM TEMPERATURE. - 11. DISPENSE 100 µL STOP SOLUTION TO EACH WELL. - 12. READ THE ABSORBANCE VALUES WITH A PHOTOMETER AT 450/630 nm WITHIN 60 MINUTES. ## 18. REFERENCES - 1. Gerlich W, Thomssen R: Terminology, structure and laboratory diagnosis of hepatitis viruses, in McIntyre N et al (eds): Oxford Textbook of Clinical Hepatology. Oxford University Press, 1991, pp. 543-560. - 2. Dusheiko G, Hoofnagle JH: Hepatitis B, in McIntyre N et al (eds): Oxford Textbook of Clinical Hepatology. Oxford University Press, 1991, pp. 571-577. - 3. Schumacher RT, Trey C: Viral hepatitis types A, B, and non-A/non-B: current concepts. The Ligand Quarterly 1982; 5: 12-27. - 4. Hoofnagle JH, Gerety RJ, Ni L, Barker LF: Antibody to hepatitis B core antigen: a sensitive indicator of HBV replication. N E J Med 1974; 29: 1336-1340. - 5. Hoofnagle JH, Gerety RJ, Barker LF: Antibody to hepatitis B virus core in man. Lancet 1973; 2: 869-873. - 6. Shifman RB et al: Significance of isolated hepatitits B core antibody in blood donors. Arch Intern Med 1993; 153: 2261-2266. - 7. McMahon B et al: Response to hepatitis B vaccine of persons positive for anti-HBc. Gastroenterology 1992; 102: 590-594. - 8. Aoki SK et al: Significance of antibody to hepatitis B core antigen in blood donors as determined by their serological response to hepatitis B vaccine. Transfusion 1993; 33 (5): 362-367. - 9. Biosafety in Microbiological and Biomedical Laboratories, Richardson JH, Barkley WE (eds). Atlanta, GA, US Dept of Health and Human Services, Public Health Service, Centers for Disease Control; Bethesda, MD, National Institutes of Health, 3rd ed., 1993. HHS Publication No. (CDC) 93-8395. - 10. Occupational Exposure to Bloodborne Pathogens; Final Rule. Federal Register. Part II; Department of Labor, Occupational Safety and Health Administration (OSHA); 29 CFR Part 1910.1030; Friday, December 6, 1991. - 11. National Committee for Clinical Laboratory Standards. Protection of laboratory workers from infectious disease transmitted by blood and tissue; Approved Guideline. NCCLS Document M29-A. Villanova, PA; NCCLS: 1997. - 12. National Committee for Clinical Laboratory Standards. Procedure for the Handling and Processing of Blood Specimens; Approved Guideline, 2nd ed. NCCLS Document H18-A2. Villanova, PA; NCCLS: 1999. - 13. U.S. Public Health Services, HHS 1996. Code of Federal
Regulations Title 42 Part 72 Interstate shipment of etiologic agents. U.S. Government Printing Office, Washington, D.C. - 14. Westgard JO, Barry PL: Cost-effective Quality Control: managing the quality and productivity of analytical processes. Washington, D.C., AACC Press, 1986. - 15. National Committee for Clinical Laboratory Standards. Internal Quality Control Testing: principles and definition; Approved Guideline. NCCLS Document C24-A. Villanova, PA; NCCLS: 1991. - 16. National Committee for Clinical Laboratory Standards. Interference Testing in Clinical Chemistry; Proposed Guideline. NCCLS Document EP7-A. Villanova, PA; NCCLS: 1986.